AD-R168 836

UNCLASSIFIED

AND/OR GRAPH REPRESENTRTION OF RSSEIlLV PLﬂNS(U)
CARNEGIE-MELLON UNIY PITTSBURGH_PA ROBOTICS INST
L S MELLO ET AL. APR 86 CMU-RI-TR-86-8 F/G 1379

PN T LI L L IT < JLTY Y N
INAD AV Al © -""~>",“‘.’.& yw—
Pl SA S

e
_

. e
\0 &
== u
[=
w
L & =
18 :

I flis N

WMICROCOPY RESOLUTION TESTCHART
NATIONAL RUREAL Or STANDARLL f

v in o talbiol e ital b e bl A AT AN T o el F (Ve o SoaNL 2 LA L

AND/OR Graph Representation
of Assembly Plans

Luiz S. Homem de Mello and Arthur C. Sanderson

CMU-RI-TR-86-8

Department of Electrical and Computer Engincering

The Robotics Institute
Carnegic-Mellon University D l ' c
Pittsburgh, Pennsylvania 15213 ELECTE
April 1986 MAY 2 T

A

Copyright © 1986 Carnecgic-Mellon University

. This rescarch is supported in part by Conselho Nacional de Desenvolvimento Cientifico € Tecnologico,
Bravil, and by the Robotics Institu*e of Carnegie-Mellon University.

This document has been oppxoved
for public release_ar_xd sale; its
distribution is unlimited.

”’.' -

) 86 5 27 003

by -.!.--. .t --' e “""‘.-' o -'. ot
KRR LN T RTINS

Y

. » . . .
R v ' » sty L alide sow' b o' S o A HMCAAS

-y G TR S F - bt B vl

.Unclassified / ‘ i-‘;
SECURITY CLASSIFICATION OF TwiS PasE ‘Uhen Dera Entered A D” ég 0 36 K :
REPORT DOCUMENTATION PAGE pErhEAPINSTRUCTIONS -
T REPOOT NUMBER 2. GOV ACCESSION NOJ 3. RECIAIENT S CATALDG NUMBER k!
" CMU-RI-TR-86-8 <
& TITLE (and Subdtisie) S. TYPE OF REPORT & PERIOD COVERED ;J.
AND/OR Graph Representation of Assembly Plans Interim o
6. PERFORMING ORG. REPORT NUMBER 5]
3. AUTHOR(s) 8. CONTRAAGYT OR GRANT NUMBER(e) tt
i .
Luiz S. Homem de Mello and Arthur C. Sanderson ‘
.‘J
£9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGAAM ELEVENT. PROJECT, TASK | 1
A -AREA & WORK UNIT NUMBERS s
Carnegie-Mellon University Oy
The Robotics Institute o
Pittsburgh, PA 15213 o
13. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE .
April 1986
13. NUMBER OF PAGES
'TE MONITORING AGENCY NAME & AGORESS(I! ditforent trem Conwelling Olftce) | 15. SECURITY CLASS. (of this report)
H Unclassified ol
T8a. OECL ASSIFICATION/ DOWNGRADING
SCHEDULE -
P
16. NSTRIBUTION STATEMENT (of this Report) -
Approved for public release; distribution unlimited :t.
~
7. DISTRIBUTION STATEMENT (of the sbetract sntered in Black 20, i difierent trem Report)
Approved for public release; distribution unlimited . '
Iu. SUPPLEMENTARY NOTES '
P-'
19. KLY WORDS (Continue an reverse s:ge If necessary and idoniily by block numbes) "
::'
p <! t‘f '\:._
20. ABSTRACT (Centinue an reverse side it necessasy and idently by dloch mumbor) }
This paper presents a compact representation of all possible assembly plans of a -
ﬂ given product using AND/OR graphs. Such a representation forms the basis for <
efficient planning algorithms which enable an increase in assembly system flexibi- §
lity by allowing an intelligent robot to pick a course of action according to '
instantaneous conditions. Two applications are discussed: the selection of the
best assembly plan (off-line planning), and opportunistic scheduling (on-line .
. »
planning). An example of an assembly with four parts illustrates the use of the -
AND/OR graph representation to find the best assembly plan based on weig_l'}injg of N

DD ;:2:",, 1473 coition or 1 wOV 8313 OBSOLETE

Unclassified

S/% 8102-016° 6601

Ce e

X ‘.’_;e.;z_:.:;a__'a_;.:.:.-,‘.-' AR

Ada o n e s s

SECURITY CLASSIFICATION OF TniS PAGE (dhen Dete Bntered)

..
R R T P AP
LT T S PO N W ey vy

"
1

. .,
NN
a'a'a

P LI .‘j
L AR L
Aandaa ad o2 002

(20 cont'd) D,

operations according to complexity of manipulation and\itability of subassemblies.
In practice, a generic search algorithm, such as the AO* may be used to find this

plan. The scheduling efficiency using this representation is compared to fixed
sequence and precedence graph representations. The AND/OR graph consistently
reduces the average number of operations.

AL

o
’

PR
Ny

O
.

ta
»

vy
o'

BR o:

.
*
.
.8,

Py

A Dk M e S N R L e R Bl N e e g G 2 LW UG 7Y N LI 3 0 g BT e

:‘:':.
é:
Table of Contents -
1. Introduction 1 1
2. Scheduling and Planning 2 -
3. Planning for Robotic Assembly 3 9
4, ANDD/OR Graph Representation of Assemibly Plans 4 :.:‘l
5. A Simple Example 7 .::
6. Finding the Best Plan as an AND/OR Graph Scarch 13 NS
. 7. Opportunistic Scheduling Using the AND/OR Graph Representation 14 N
) 8. Conclusion 17 -
h .
-
o
£ "
L A
.. O
i
)
4 .~
: [
"
A X
: i
cd :,
5 P Justdficettirn "
g ¢ r.
. ; By f
" | Distribation/ ?
| Availability Codes | E
If—m " |Avail and/or
A iDist Special &
o - :;
(4 [&
4
N
e

.‘n .- .‘q i.. .. !~_ '~. : .-l ." P -.-0. .“'. o .t- ~‘l ‘-' .-' ‘.. N . .‘- ._~-.A~ .“ °
""

LRV S T Y
F° A S I RV D]

List of Figures

Figure 1: A simplc product

Figure 2: Possible sequences of operations to assemble the product of figure 1

Figure 3: Precedence diagrams: (/) combines A-B-C and B-A-C; (2) combincs C-B-A
and B-A-C; (3) combincs B-A-C and B-C-A

Figure 4: AND/OR graph for the product of figure 1

Figure §: Solution tree corresponding to sequence 4 (C-B-A) in fig. 2

Figure 6: Solution tree corresponding to scquence 8 (E-C-A) in fig. 2

Figure 7: Solution tree corresponding to sequence 3 (B-C-A) in fig. 2

Figure 8: Solution tree corresponding to sequences 6 (D-C-A) and 7 (C-D-A) in fig. 2

Figure 9: Solution tree corresponding to sequences 9 (E-A-C) and 10 (A-E-C) in fig. 2

Figure 10: Solution trec corresponding to sequence 2 (B-A-C) in fig. 2

Figure 11: Solution trce corresponding to sequence 5 (D-A-C) in fig. 2

Figure 12: Solution tree corresponding to scquence 1 (A-B-C) in fig. 2

Figore 13; Robotic workstation

» ¢ g

‘
»
]
o
[

RN

".r-‘
O

List of Tables i

‘Table 1: Assignment of weights to hyperarcs 14 -~
Table 2: Number of opcrations needed to assemble the product of fig. 1 for all 16 *
the sequencces in which the parts may be acquired, and for the three ’
schemes of plan representation, a

o

h

0

AN

VYTV Y

i

‘ S

--I."‘

0
A,

-

i1l

. 4""4'-.(-4’.

. N .. .
T T et K

. . . 2w 0" o ~e e e N

s b e e g gt L Ny Ny

- P
LT RR Ul '--_ A
- "

{adas

Abstract

‘This paper presents a compact representation of all possibic assembly plans of a given product using
AND/OR griphs. Such a representation forms the basis for efficient planning algorithms which
cnablc an increase in asscmbly system flexibility by allowing an intclligent robot to pick a course of
action according to instantancous conditions, 'I'wo applications are discussed: the sclection of the
best assecmbly planm (oft-linc planning), and opportunistic scheduling (on-line planning). An
cxample of an assembly with four parts illustrates the use of the AND/OR graph representation to
find thc best assembly plan based on weighing of operations according to complexity of
manipulation and stability of subassemblics. In practice, a generic search algorithm, such as the A0*
may be used to find this plan. The scheduling efficiency using this representation is compared to
fixed scquence and precedence graph represcntations. ‘Fhe AND/OR graph consistently reduces the
average number of operations.

AN

A o

-

» 'l "' "‘

’.-}"’L..l. l'l ‘

~—r Tt v Ty
oy & N 4 % S

i

8 =8 0w
. o
LN AT

1. Introduction ;

Robotic assembly often requires reprogramming or reconfiguration in order to handle a varicty of designs in >
the same system. The design and implementation of such flexible systems is difficult, and automated planning j_ k

techniques may provide major advantages. Such task planning for robotic assembly is critically dependent on b

the task representation: a new approach t task representation using AND/OR graphs is described in this paper. ‘

: Flexibility in robotic workcclls provides a number of advantages. lexible robotic workcells may be :.
reconfigured to handie a wide range of styles and products. Further flexibility can be achieved if those .

'ﬂ workcells arc able to assemble the same product in different ways. In order 10 accomodate the assembling of *
several different products in the same shop, it is necessary to schedule the available machines to each job. Since i

- different machines may have different capabilities, the assembly procedure may vary depending on what :_\
; machine is scheduled to do the job. Also, the same product may be assembled in different shops that may have “
: different machinery. Another advantage is an improvement in the ability to recover from errors and other ;
unexpected cffects that cause the execution of a task to deviate from the preplanned course of actions. When a-

deviations occur, it is preferred that the task execution continue, as cfficiently as possible, from the unpredicted

. state towards the goal. Many deviations of the desired course of actions are not necessarily crror conditions, but "
are due to the many random factors that affect the whole manufacturing process, and flexible shops should be
: able to cope with thosc factors autonomously. :
! Even with flexibility of thc mechanical hardware, current robotic assembly systems arc not able to follow - :
: many different courses of actions within a given task. A principal reason for this limitation is the inadequate
3 data structure for the representation of task plans. Ordered lists of actions, that have becn used in early robot \\
systems, which were developcd outside the manufacturing context, do not permit flexibility in task execution. g

. Triangle tables [4] have been used for the representation of plans, and they improve the capability to recover :'_'-
. from errors, but only within one fixed scquence. A more significant improvement was the use of precedence :::
diagrams [5] for the representation of plans, but that technique has limitations also, and in most cases allows \
. only a small amount of flexibility. ':
:: This paper presents a compact representation for the set of all possible assembly plans of a given product. :;.'
X Such a representation cnables an increase in assembly flexibility by allowing an intelligent robot to pick the ::;:
. more convenient course of actions, according to the instantancous conditions at the shop. In sections 2 and 3, -
the necessary background is cstablished. Section 4 shows the representation, and section 5 presents its use for _
the assembly of a simple product. Two applications arc discussed: section 6 shows how the selection of the best :
tl asscmbly plan can be implemented as a graph scarch, and section 7 shows the use of the representation in : :

opportunistic scheduling. Section 8 summarizes the contribution of the paper and points to further research.

-

-
¥}

D N T DR NS O P e R L At L
D A e] “ et 0. D I T A L R S fe et T et v .

o T e e e T e

T S DA T T T I S I8 e o . R I R . . -~ R RSO
K K - o te et K . P N A R S Te e R - AT I P I

S EPFRA R £ KL CL AL PGV S PO GRS PP A VPO PO P L R AT U P S A T A O T P W Iy NP TRy A Y

2. Scheduling and Planning

Assembly of onc product requires sclection of a sequence of operations and assignment of times and
resources for cach operation. ‘The probiem is usually divided into two parts: planning, or process routing,
which is the selection of a scquence of operations, and scheduling, which is the assignment of times and
resources.

Scheduling problems, including job-shop scheduling, project scheduling, and assembly-line balancing, have
been intensively investigated in Management Sciences and Operations Rescarch[1]. Mathematical
programming techniquces have most often been used to solve those problems. More recently, the scheduling
problem has been studicd using contraint-directed reasoning [6].

Planning has been an important rescarch issue in artificial intclligence. BUILD [2] and STRIPS [3, 4] are two
early cxamples. Both systems aim to gencerate plans that cnable robots to perform certain tasks, Typically, the
tasks consist of achicving a state that satisfics some goal condition from a current state of the world (i.c., the
robot environment), and the plans consist of ordered sequences of actions that will transform the initial state
into a goal state.

The representation of plans are commonly based on ordered lists of preprogrammed primitive actions. There
are somec extensions to that representation scheme that enable the robot to take advantage of the work already
donc in planning, in case uncxpected cvents happen during the execution of a plan. STRIPS, for example, uses a
tabular form, called a triangle 1able, to store a plan. BUILD associates to cach primitive action a REASON list
(subgoals) as well as a description of the states of the world before and after the action is executed. More recent
systems, such as NOAH [9], represent plans as partially ordered sequences of actions with respect to time.,

A major emphasis of research work on planning has been on the scarch aspect of the problem, cspecially
control schemes for the search. Priority has been given to develop cfficient, powerful and general purpose
procedures that can find at least one plan in a wide varicty of situations rather than procedures that eventually
find the most efficient plan in a more restricted type of situation. In applications where plans are executed one
time only, inefficiencies in the plan do not cause any major harm. Also, if plans are generated on line, high
speed in plan generation is often preferable to optimal plans.

Search for the most efficient plan requires a criterion to decide whether one plan is better than another. This
decision, however, usually requires information available at execution time only and producing the plan in real
time may dcgrade the robot opcration, or even be unfeasible, due to the long computing time it usually takes to
gencrate a plan. The choice between planning ahead of time (off line) and planning in real time (on line) is
difficult; the former may lead to incfficient plans, whercas the latter may cause a degradation in the robot

operation.

'
| |28
:

..,',
vl 5
PSR

N '~‘|.z'

L.

A ST,
A)

. (]
Voate et
B

—ryrv—
e DN l"f
3 * 5

r

NNAXA l
F)

A

o f

i B D

N

LR Y G

* Lt . . . w T - e . . e e ™ -
-‘ P . L - - W « . - - - . - K '_. - 0 .- - . R '.- - MY
R A S A A R RO L Lo,

3. Planning for Robotic Assembly

To achieve the desired high levels of productivity, the assembly plins must be cfficient and keep wasted time
and resources o a minimum. Should inefficiencies in the assembly plan of one product be multiplied by the
size of the lot. which in common robotic assembly applications ranges from 1,000 to 100,000 units, the resulting
total waste may reduce drastically the productivity and may jeopardize the whole process. Conditions at the
shop, however, change with time (for example, parts may come in random order), and, usually, there is no
single plan that is cfficient in cvery possible situation.

Fox and Kempf [S] address the necd to act opportunistically, as opposed to always follow a preprogrammed
fixed order of opcrations. ‘They suggest that plans gencrated off-line to be given to the robot be a set of
operations with minimal ordering constraints. Such a plan was represented by a precedence diagram and would
actually encompass several possible sequences of operations that would perform the task of assembling a given
product. In rcal time, depending on the coflditions at the shop, the intelligent robot would pick the most
appropriate sequence. Using Fox and Kempf notation, the sclection of one scquence, and the assignment of
operations to specific machines is what is commonly referred to as the scheduling process. Since that selection
process involves much less computing time than the planning process, no degradation in the efficiency of the
robot operation should occur.

Planning, in this sense, should yicld all possible sequences of operations that can be uscd to assemble a
product. That information is the input to the scheduling process, which in real time sclects one of those
sequences and assigns the machines that will do cach operation.

The problem with the precedence diagram formalism, as Fox and Kempf themselves point out, is that for
most products no single partial order can encompass every possible assembly sequence. The assembly of the
simple product shown in exploded view in figure 1, for example, may be completed by following one of the ten
different sequences of operations that are represented graphically in figure 2. It is possible to combine some
scquences into onc partial order using precedence diagrams. Figure 3 shows threce possible ways to combine
two of the first four sequences in figure 2; the only restriction is that the insertion of the stick cannot be the last
operation. It is possible to combine three of those four sequenccs into one partial order by using a dummy
operation, but it is not possibie to combine the four sequences into one partial order, nor it is possible to
combine any of those sequences with the other six sequences in figure 2.

A closer look at the partial ordering representation of plans, in the light of the above assembly example,
shows another deficiency of that solution. Two distinct feasible sequences, A-B-C and 8-A-C, for example, do not
differ simply by the sequence of the operations. Inserting the stick first is not the same operation as inserting it
after the receptacle and the cap have been screwed together. The latter operation is probably casier to exccute.
Similarly, screwing the receptacle and the handle with the stick inside is probably casier to do if the receptacle

e

<

f"f\f < 1

-
»

e

L- -

O

oy
Lol :""-a"

3 1

L
Y,

D

PN

R RATRA a cot A e et A A M e A AR I A AN AU A A AL LA A At At S AL S AT

CAP STICK RECHPTACLE HANDLE

Figure 1: A simplc product

and the cap are screwed, than otherwise. The partial ordering approach, however, does not capture this subtle
difference. The next scction will describe another approach to the representation of plans that captures this
difference, and that can combine ali possiblc assembly sequences.

4. AND/OR Graph Representation of Assembly Plans

Planning the assembly of one product made up of several component parts can be secn as path search in the
state space of all possible configurations of that set of parts. The initial state is that configuration in which all
parts arc disconnected from cach other, and the goal state is that in which the parts are properly joined to form
the desired product. The moves that change one state into another correspond to the assembly operations since
they change the relative position of at least one part. There may be many different paths from the initial state
to the goal state. Krogh and Sanderson [7] present an overview of task decomposition and operations.

In this context, any set of parts that arc joined to form a stable unit is called an assembly. A component part is
also an assembly, with a special property. ‘The word subassembly refers to an assembly that is part of another,
more complex assembly, and it always carrics the subsct/sct connotation.

Because there are manv configurations that can be made from the same parts, the branching factor from the
initial state to the goal state is greater than the branching factor from the goal state to the initial state. A
backward scarch, therefore, will be more cfficient than a forward scarch for the assembly planning problem.
The problem of finding how to assemble a given product can be converted to an e~uivalent problem of finding
how the same product can be disassembled. Since assembly operations are not necessarily reversible, the
equivalence of the two problems will hold only if the operations used in disassembly are the reverse of a feasible
assembly operation regardless of whether these reverse operation themsclves are feasible or not. The

expression disassembly operation, therefore, refers to the reverse of a feasible assembly operation.,

. - '» .-. ‘o \ ~.. . .~_ -- . -, ‘u - . -" - . . " .~' ." e . - ..- . --' ." '.\‘ . - -~‘ A" ~‘ . . B - ." - Tarot."
R I SRR S g T Tt Tt T T T N T et L AP R T v Ca e e . P W
B GRS Nl LI N S PP PSP TP RPN SO, UL NG D VD iy G i WA WA DR WY WP W Wi P Wl v W w ey i - e P -

e

i

SCREW INSERT INSERT SCREW
RECYPTACLE STICK INTO STICK INTO RICIPTACLE
ANDCAP RECIFIACLY RECHPTACLE ANDIIANDIE
8 C
INSERT SCREW SCREW INSERT
STICK INTO RECFPTACLE RECTPTACLE STICK INTO
RECEPTACLE ANDCAP AND HANDI RECEPTACLE
C /
SCREW SCREW SCREW SCREW
RECEPTACLE RECEPTACLE RECEPTACLE RECEPTACLE
AND HANDLE AND HANDLE AND CAP AND CAP
(A-BC) (B-A-C) (B-C-A) (C-B-A)
Q) v)) 3) O]
D
PLACE PLACE SCREW PLACE PLACE SCREW
STICK STICK RECEPTACLE STICK sTICK RECEPTACLE
ONCAP ONCAP AND HANDLE ON HANDLE ON HANDLE ANDCAP
c C
SCREW SCREW PLACE SCREW SCREW PLACE
RECEPTACLE RECEPTACLE STICK RECEPTACLE RECEPTACLE STICK
AND CAP AND HANDLE ONCAP AND HANDLE AND CAP ON HANDLE
c] Y
SCREW SCREW SCREW SCREW SCREW SCREW
RECEPTACLE RECEPTACLE RECEPTACLE RECEPTACLE RECEPTACLE RECFPTACLE
AND HANDLE ANDCAP AND HANDLE ANDCAP AND HANDLE AND IANDLE
(DAO (OCA) CDA) (ECA) (EAO (A-EQ)
) (6)) (3))] (10)

Figure 2: Possible sequences of operations to assemble the product of figure 1

o

AR

A

-' 'l -' -’

e
o

R

vy Ty

',.

PR N

K
A
T
. ot
2
b
~ i
SCRIW INSERT SCRKW INSERT INSFRT I.",
RECIHPTACTE STCK IN1O RECHPTACLLE SHCK INTO STNCKINIO L
AND CAP RECEFFACLE AND HANDLE RECYPTACHLE RUCTPTACLY —~
SCREW SCREW SCREW - SCRIW !\
RECIPTACLE RICFPTACIE RUCEPTACLE RECYFPTACLE —
AND HANDLE AND CAP AN CAP AND IIANDILE \L]
' o
:) @ @ o
Figure 3: Precedence diagrams: (/) combincs A-B-C and B-A-C;
(2) combincs C-B-A and B-A-C; (3) combincs B-A-C and B-C-A
-
] :".
The backward search suggests a decomposable production system in which the problem of disassembling one 2.
. product is decomposed into distinct subproblems, each one being to disassemble one subassembly, Each o)
decomposition must correspond to a disassembly operation. If solutions for both subproblems that result from N
b the decomposition are found, then a solution for the original problem can be obtained by combining the '_-:f
solutions to the subproblems and the operation used in the decomposition. For subassemblics that contain one .
part only, a trivial solution containing no operation always exists. Usually there will not be a unique way to _
decompose the problem, or to cut the assembly, because there may be several different ways to assemble the ;{:
same product. 5
F\.
-\ r
N
Structures called AND/OR graphs [8), or hypergraphs, are useful in representing decomposable problems and m
they have been used to represent the disassembly problem. The nodes in such a hypergraph correspond to N
assemblies; nodes corresponding to assemblics that contain only one part are the terminal nodes. The :ls,‘_
hyperarcs (or k-connectors, k being any integer greater than zero) correspond to the disassembly operations. ::-
Each hyperarc that leaves one node corresponds to a disassembly operation applicable to the assembly of that ‘
node, and the successor nodcs to which the hyperarc points correspond to the resulting subassemblies produced
by the disassembly operation. Because for most products the assembly operations usually mate two A
subassemblics, the hyperarcs in the corresponding AND/OR graph are usually 2-connectors. There are cases, .o
however, of opcrations that mate more than two subassemblies (e.g, assembling a hinge with two wings and one ,.__
pin), as well as operations that involve only onc subassembly (c.g., drilling a hole in a part). Hyperarcs in . .
M)
AND/OR graphs can represent all those possibilities. -
.::-'.‘
A solution tree from a node N in an AND/OR graph is a subgraph that may be defined recursively as either ;-:.';
. , . NS
N itsclf if N is a terminal node, or N plus one of its outgoing hyperarcs plus the set of solution trees from each
of N's successors through that hyperarc. This definition assumcs that the graph contains no cycle as is true in ‘f-*
8 =
--{.- e el \ . 4‘.;_- g -\-. :.-\-_..-_. A .":.'_‘.- IR -..".-.'.-_;_:\..‘:_..:_.\-_.\'_.-:‘.{_. -_..:.. --.-{.-_..‘_ _.:__.-__ A RN N ‘:_\°

- AJUS . . LY - it . ¥ a
. R A R A R b A St KA L

L

.

the disassembly problem. ‘There may be none, one, or several solution trees from a node in an AND/OR graph. ;
W
The useful feature of the AND/OR graph representation for the assembly problem is that it encompasscs all 1y,
possible partial orderings of assembly operations. Morcover, cach partial order corresponds to a solution tree -.;

from the nodce corresponding to the final (assembled) product. This feature is demonstrated through the

. . ' hy
examplc in the next section, o

: I
g .-&
- 5. A Simple Example)
w4

Figurc 4 shows the AND/OR graph for the product in figure 1. Each node in that graph is labeled by a
databasc that correponds to an assembly. In figure 4, the databases arc represented by exploded view drawings,
whereas in a computational implementation, the databases are relational data structures. To facilitate the
exposition, both the nodes and the hyperarcs in figure 4 have identification numbers.

R 2 SRR
l D l‘l.('l'| |

' The root node in figure 4 (node 1) is labeled by a database that describes the assembled product. There are ~
) four hyperarcs leaving that node. Each of those four hyperarcs corresponds to one way the whole assembly can §
:: be disassembled and each onc points to two nodes that arc labeled by databases that describe the resulting e
’ subassemblics. Similarly, the other nodes in the graph have a lcaving hyperarc for each possible way in which
o their corresponding subasscmbly can be disassembled. {
: Any subassembly that can be made up of the component parts may appear only once in the graph, even when :;
; it may be the result of different disassembly operations. The subassembly of node 4, in figure 4, for example, ;.
may result from two diffcrent operations, which correspond to hyperarcs 5 and 10. Moreover, those two &
R hyperarcs come from two distinct nodes. v
: R
n Nodes corresponding to component parts (nodes 9, 10, 11 and 12) are the terminal or goal nodes since they :
g correspond to disassembling problems for which a (trivial) solution is known. There arc cight solution trees :
y from the root node (node 1) and they are shown in figures 5 to 12. .
. One important feature of the solution tree representation shown in figurcs 5 to 12 is that the distinction t
N between operations becomes apparent because distinct operations correspond to distinct hyperarces. In other >
words, two distinct assembly scquences include the same operation only if the two corresponding solution trees B
include the hyperare corresponding t that operation. Hyperarc 1, for example, is present in the solution trees -
3 in figures §, 6, and 7; therefore, the same asscmbly operation is part of three distinct sequences. Converscly, the E
s operations SCREW THE RECEPTACLE AND THE CAP in sequences A-B-C, B-A-C, and 3-C-A of figure 2 correspond to j'.
hyperarcs 1, S, and 13 in figure 4; therefore, they are three different operations. The scquence diagrams in e
:: figure 2 and the precedence diagrams in figure 3 fail to make this distinction. '
. , X
o
b
TGRS S A O GRS 2 S e SR LG e L 00 5 000 (U N oA e S A SN A A S A A A

. DA R T e, PP G - K

* v

i "
¥

af] *

4

¥ 8y

W
[1 2 4 .
R . [

P %
A . \
\ Y
R - b
] . T :
- / : .
. 7 s .
.l - ‘..
‘. -
al ."
4.
(‘.
- -
1
. H
7) T Om =]
1] - .l
u 2
e
A
~ :'c
-
. L~ Pt
10 v
. |9 m . 12 m}= :\.
. o
. 4 - N

v S}

1

. ' Figure 4 AND/OR graph for the product of figure 1

.

-

"'C'ﬂ

22

oy s e e
L) » .
[N N]

r

RO I IO Ny 4‘.'-'_.#.'~'\-’$~'~¢', AR S NN ."q.-__v‘;.-__'.\'.._:.-,;~_;._' -

o

A R R Ao 07 g) T R e N e b o 0y b g B R R Ll g A Ria g ben bin dip 8'nln An e g t-gipt gbntnipbpndaler: ' D ORI N P8 PO 08 T O A v o

Pl i e

e
IR

r©
s,

4 & x 4 4 & 3
.

I\

Pt i

Figure 6; Solution tree corresponding to sequence 8 (€-C-A) in fig. 2

SRV ITNT VD At S iy i &] i A g 3 ot DR R oyt Tl St il S ¢ IS O

\

Y.
4 ’
Iy :

: by
[] I 43
.
’, T
:' t"

’ i.

')
N L
\‘. \

A 4
- .
- .
’ [0 :
e
y ht
" Figure 7: Solution tree corresponding to sequence 3 (B-C-A) in fig. 2]

L] 1] ‘

¢ 3
3
", s

i' ..

» Ln
- ~
Cd e

. ¥

K S

y x

- .
5 .

. [.

o .

. © !

; g

- .-

. N:

ﬂ e
o

) -

. - .

o Figure 8: Solution trec corresponding to sequences 6 (D-C-A) and 7 (C-D-A) in fig. 2 ;;'
¢

>
» N

AR] 9 N (] A (%) | » 3 e - - ey
.'..

W

bt s
i ,
' e,
>

o

>

>3

h o
p ‘\.
! Ky
i

e

"

Figure 9: Solution tree corresponding to sequences 9 (E-A-C) and 10 (A-e-C) in fig. 2

Emf\ 5

5 =
b e

v -
v
Al

b

. vo-
P
ot e

-

v

AR

a8

g T

[

Figure 10: Solution tree corresponding to sequence 2 (8-A-C) in fig. 2

R g e B §
A

- sy

Z'.,‘,"."p '/‘“t

1

B Raf Aok Dot EoV. N)) o b kSt Aat. 7 A DA B . S Aat §ot. Mot S0t Ba o' (g Sa e da Rat.ba @ ¢ ¢ .

by Aah A ., 4 A

U

v ’

o '

[}

. .
4]

2P

s
>,
-

1
: \
, '
Q v
'
Al
- 4
N . F .
-" ¢
- :
n .
b : LY
¥ [
’
'_:' ‘
- <
« .
‘. -
)
2 “
.. ‘~
- 3
i r
oy .
X Figure 12: Solution tree corresponding to scquence 1 (A-B-C) in fig. 2
.
o« ‘.
o e
] ‘.
L ~

“q
. »

R A S

‘)
(S N T}

SRS

<.
)
3
Fach solution tree shown in figures 8 and 9 corresponds to two sequences, but unlike the precedence A
diagrams of figurc 3, the operations arc exactly the same, regardless of the order in which they are exccuted. p
"
‘s
6. Finding the Best Plan as an AND/OR Graph Search e
i"
To solve problems that require optimization, such as the selection of the best assembly plan, one must be able
to traverse the space of all candidate solutions, regardless of the method used to solve the problem. The choice ;
of the representation is critical since it is often difficult to delimit the set of potential solutions in a form which
enumerates all the clements. -
The AND/OR graph representation encompasses all possible ways to assemble one product, and therefore .
allows one to explore the space of all possible plans. Since plans correspond to solution trees in the AND/OR -}
graph, the selection of the best plan can be seen as a search problem. Any such search problem requires a t .
criterion to compare plans. One possibility is to assign to the hyperarcs weights proportional to the difficulty of .":;
their corresponding operations, and then compute the cost of a solution tree from a node, recursively, as: ‘
o zero, if the node has no leaving hyperarc; or ';
o the sum of the weight of the hyperarc Icaving the node and the costs of the solution trees front the -:
successor nodes. :
The best plan corresponds to the sofution trec that has the minimum cost. The search for the best plan can be 4,
conducted using generic algorithmns such as the A0* [8]. : _"::.-
)
A variety of factors might be considered in assigning weights to hyperarces, including time duration of their A
corresponding operations, requirements for reoricntation of fixturing, cost of resources needed, reliability, as
well as production prioritics and constraints. EJ"_
For the product in figure 1, the AND/OR graph (figure 4) has 15 hyperarcs, which correspond to 15 different t’:'_
assemnbly operations. Table 1 shows one possible assignment of weights to hyperarcs. Those weights have been
computed by adding two factors, The first factor is the type of assembly operation, with screw operation
weighing 4, insertion 2 and placement 1, in accord with typical time, fixturing and manipulation requirements.
The second factor taken into account is the difficulty of handling the participating subasscmblics, and is ":i
proportional to their number of degrees of freedom; subassemblies with more degrees of freedom are more Ei
unstable, and therefore more difficult to handle. _
Using that assignment of weights to hyperarcs, the total cost for the solution trees of figures 5 to 12 can be ._\
computed. The solution trees in figures 5 and 12 have the minimum cost of 11; the solution trees in figures 7, 8, ,,.-
9, and 10 have total cost 13; and the solution trees in figures 6 and 11 have the highest cost of 14, .
Iaty”
i
20
._w.
13 -
B R A I S B S T B S T S B ST SR R

¢ Y%
N
‘Table 1: Assignment of weights to hyperarcs Y,
3 hyperarcs E
! 1 2 3 4 5§ 6 7 8 9 10 11 12 13 14 15 c"
factor ‘_
T
opcration 4 4 4 4 4 4 2 2 4 4 2 1 4 4 1
subassembl K
degrecsof 1 4 4 1 2 4 0 0 4 2 0 0 0 0 O 5
frcedom :
total 5 8 8 S 6 8 2 2 8 6 2 1 4 4 1 _
For more complex assemblics, instead of a complete cnumeration as done above, scarch algorithms can be
used to reduce computation. For the product in figure 1, a search using A0* will yicld onc of the solution trees
shown in figures 5 or 12, depending on how the partial solutions and tip nodes are ordered for expansion. :
7. Opportunistic Scheduling Using the AND/OR Graph Representation ’
To evaluate how the use of AND/OR graph rcpresentation for assembly plans affects assembly efficiency, a
. comparative analysis among the three representation schemes discussed in this paper has been conducted. :‘_;:
. The product in figure 1, and the robot workstation of figure 13 have been used as examples. The workstation £
is equipped with two manipulators and the parts are presented in random order. It is assumed that a cap, a
stick, a receptacle, and a handle always come togcther, varying only in their order. It is also assumed that both .‘::;
maripulators are controlled by the same central unit and they both are able to exccute the following actions: ,j: '
@ acquire: fetching, by one of the manipulators, of one part from the part feeder ,
o buffer: temporararily storing one part into a fixed location within the workstation
e mate: joining two subassemblics which are currently held by the manipulators
e retrieve: fetching, by one of the manipulators, one part known to be in the parts buffer
The efficiency of this assembly station depends on the capacity to handle parts in random order. This
requires on-line scheduling of system resources depending on the order of parts arrival. The relative impact of :-3
plan representation schemes on assembly efficiency can be compared by the average number of operations R
needed; a smaller average number of operations corresponds to more efficiency. ‘;_

The first sequence of figure 2 (A-B-C) has been used as an example of fixed sequence representation and the

14

. '-’ -

L2%0 Vs e e che Attt Rt Sulk Gt ROU A Cab b Rt 0 i B

R O | B o Y| I

I
yumns
© —9

Figure 13: Robotic workstation

first precedence diagram of figure 3 (which combines A-B-C and B-A-C) as an example of precedence graph
representation. Similar results will be produced using the other fixed sequences or precedence graphs. The
number of operations that would be performed for each one of the 24 possible orderings in which the four parts
of the simple product can be acquired is shown in Table 2. At least 7 operations are necessary: four acquisitions
and three matings; depending on the order in which the parts are presented, buffering, and therefore retricving
may also be necessary.

When using the fixed sequence representation of plans, extensive buffering is necessary. For example, if the
order the parts come is S H R C (stick, handle, receptacle, and cap) both the stick and the handle must be
buffered since they are not used in the first operation; adding two bufferings and two retrievings to the four

acquisitions and three matings that are always necessary yields 11 opecrations. The average number of
operations for all 24 possible orders is 9.8.

Using precedence diagrams for the representation of plans avoids some of the buffering and reduces the
average number of operations to 9.2. For the sequence SHR ¢, for example, only the handle must be buffered

i
r
>
©
)

since the inscrtion of the stick into the receptacle may be the first operation.

T Te a7

Using the AND/OR graph rcprescntation of plans, however, avoids most of the buffering, and yiclds the
average of 8 operations. For the same S H R C sequence, for example, no buffering is nceded because the robot
can follow the sequence of operations corresponding to the solution tree shown in figure 6.

15

P T T FIEEBST" S Y VY TVRNERT

T A T e T S Tt e h ah T e e T U NN L N
SR SRR ARG AT A PO E AT RO

ey o

."‘-

7

oA

‘Table 2 Number of operations needed to assemble the product of fig. 1 for all the sequences ::

in which the parts may be acquired, and for the three schemes of plan representation, -

C=cap S=stick R=receptacle H=handle 3

first scquence first precedence diagrams AND/OR graph S:::
scquence of figure 2 of figure 3 of figure 4 ,‘:E
CSRH ' 9 9 7] '
CSHR 11 11 9 s
CRSH 7 '
CRHS 9 9 9 oy
CHSR 11 i1 9 .
CHRS 9 9 9 BN
SCRH 9 9 7 N
SCHR \| 11 9 -
SRCH 9 7 7 oy
SRHC 1 9 7 i
SHCR 11 1 9 -
SHRC 11 9 7 L
RCSH 7 7 7 i
RCHS 9 9 9 e
RSCH 9 7 7 =
RSHC n 9 7 o
RHCS 9 9 9 -+
RHSC 1 9 7 R
HCSR 11 11 9 ﬁ;
HCRS 9 9 9 -
HSCR 11 11 9 -
HSRC 11 9 7 g}
HRCS 9 9 9 S
HRSC 11 9 7 o
';?.;1
average 9.8 9.2 8 ‘:
S

¥ At

16 .

Cadl — w "y —d - v
- <_‘ S ANl AN i Paliae . e Pl Pl i Saf i Bt e S oI A Nl g S At e G 22 B e s AR S hur AL Svia She Slec 8 an i A Al ie _al

8. Conclusion

A compact representation for the set of all possible assembly plans of a product has been presented, along
with its applications in the sclection of the best assembly plan and in opportunistic scheduling. One important
feature of that representation is that it allows one to traverse the space of all possible assembly plans, and
therefore provides an opportunity to sclect an optimal schedule and dynamically adapt scheduling to changing
conditions. Both the fixed sequence representation and the precedence diagram representation are very limited
in this aspect.

A number of issues related to this representation arc under investigation. One important issuc is the
development of algorithms for upportunistié scheduling suitable for real time operation. As pointed out in
section 7, some buffering could not be avoided, even with the usc of AND/OR graph representation of plans. For
complex products, the choice of which part or subassembly to buffer may affect the overall assembly efficiency
and criteria for that decision will be necessary. These criteria will certainly depend on evaluation functions, also
under investigation, used to sclect a plan, cspecially functions that do not posscss the recursive property like the
one uscd in scction 6.

An additional important ongoing rescarch issue is the development of a representation of assemblics suitable
for the automatic generation of plans. Such automation can be helpful in design of both new products and
assembly systems. In designing new products, the designer can quickly assess the difficulty of assembling and
eventually modify the design to facilitate the assembly. In dcsigning new assembly systems, the designer can
evaluate the performance of a proposed design for a given sct of products.

17 ';
~
et

.1
.‘-.. .-u.h T- . >\ . . - e - T - - " c. N M h - “e - '_ . * - - - = - . - '..'1
e e . B -‘..‘_.“.._. el R o N AR 3
PRI I PR I A .LJ'-'-A*.LJJ.Q_J'~.-'¢¢J s A_n’:‘z-\.a.a I I I S I T A T Sy e PPy

References

[11 Bellman, R, ctal.
Mathematical Aspects of Scheduling and Applications.
Pergamon Press, 1982,

[2] Fahlman, Scott Elliott.
A Planning System for Robot Construction Tasks.
Artificial Intelligence 5(1):1-49, 1974,

[31 Fikes, Richard E. and Nilsson, Nils J,
STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving.
Artificial Intelligence 2:189-208, 1971.

f4] Fikes, Richard E. ct al.
Lcarning and Executing Generalized Robot Plans.
Artificial Intelligence 3:251-288, 1972,

[5] Fox, B.R. and Kempf, K. G.

p Opportunistic Scheduling for Robotics Asscmbly.

B In 1985 IEFEL International Conference on Robotics and Automation, pages 830-889. 1EEE Computer
Society, 1985.

i [6) Fox, Mark S.

Constraint-Directed Search: A Case Study of Job-Shop Scheduling.

PhD thesis, Carnegie-Mcllon University, december, 1983,

Also published as technical reports CMU-CS-83-161 and CMU-RI-TR-83-22.

o ol o0

7 Krogh, Bruce H. and Sanderson, Arthur C.
Modeling and Control of Assembly Tasks and Systems.
Technical Report CMU-RI-TR-86-1, Robotics Institute - Carncgiec-Mellon University, 1988,

[8] Nilsson, Nils J.
Principles of Artificial Intelligence.
Springer-Verlag, 1980.

{9] Sacerdoti, Earl D.
A Structure for Plans and Behavior.
Elsevier North-Holland, 1977.

18

)_";“-I ‘‘‘‘‘‘‘‘‘ -

oo et
AR i s s at e

T
>
O

, ".. R *'-

‘.,....s.- T AL *_~'-.'~.‘~.'\'-.'\'\.'-"

" N '. PYARRY ‘
RGN ﬁ-\-m-x*f‘*&mw«xm RN
\ I.‘ [N

